‘BOUNDARY—LAYER INTERACTION WITH A NONEQUILIBRIUM
TWO-PHASE STREAM ON A SURFACE BEING BURNED
OUT IN AN AXISYMMETRIC LAVAL NOZZLE
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§1. The analysis of a two-fluid two~dimensional stream is based on the Rakhmatulin model of a two-
velocity and two-temperature continuous medium in which the real flow is replaced by a mutually penetrating
flow of two interacting continuous media [1-8].

The initial stationary problem for the analysis of the flow for a given nozzle contour is replaced by a non-
stationary problem, i.e., a buildup process is used to obtain a stationary flow picture. The nonstationary sub-
and supersonic flow equations are equations of hyperbolic type. As a result of neglecting the particle volume,
the stationary equations of particle motion are also of hyperbolic type.

The system of equations has the form [2, 4, 6]
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All the quantities in (1.1) and (1.2) are dimensionless: The linear dimensions are referred to the radius
of the nozzle critical section r,, the velocity projections of the gas u® and v? of the particles with subscript p
are referred to the speed of sound of the gas a_; the magnitudes of the density p0, pressure p’, temperature T9,
enthalpy HY, and energy EY are referred to the corresponding quantities at the stagnation temperature T, in the
forechamber; the time t0 is referred to the quantity r ./ a«,and the specific heat c% is referred to the gas con-
stant R.

It is assumed that all the parameters across the initial section of the nozzle are distributed uniformly
and are obtained from a computation of the one-dimensional equilibrium two-phase stream without particle lag.

Novosibirsk. Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskol Fiziki, No. 3, pp.
53-62, May-June, 1977. Original article submitted August 30, 1976.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

323



Moreover, homogeneous distributions of the enthalpy H and entropy S are assumed, and the transverse velocity
component v varies linearly along the radius for the gas. The density pp is constant for the particles and de-
pends on the relative weight concentration z:

for x=x;, 0 =y < 8 (x)
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where 8 (x) is the equation of the nozzle contour.

The nonpenetration condition is posed for the gas on the nozzle wall:
- g
for Y= 06 (2) and Ty << R=Mm EG (z).
No reflection is assumed for the particles at the wall, and no additional conditions are imposed.

On the axis of symmetry

for y =0 andz, < s 20,
0m/dy = 0m,/0y = 0pldy = 0Ky = 8T pl0y = dpp/dy=0, n=0, n,=0.
A region of pure gas appears near the wall because of particles lagging behind the gas. The particle
limit line was sought by means of the equation dT' dx=np/mp in the domain 0 sy < I'(x), X, X <X,.

The buildup method for the gas equation becomes superfluous for the supersonic region of the nozzle,
since the stationary equations are of hyperbolic type. The stationary systems of equations for the gas and
particles (1.1), (1.2) were solved in this region. The solutions for x=x,, obtained from an analysis in the
supersonic domain, arethe input parameters for these equations.

To solve the systems of equations presented above, the independent variables are transformed. In the
system (1.1)
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and in Egs. (1.2)
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This transformation excludes the appearance of nonregular nodes reducing the accuracy of the computa-
tion in a solution using a finite-difference scheme.

The transformed systems of equations were written in divergent form. Their numerical solution is based
on the MacCormack two-step difference scheme [9, 10], which is a predictor—corrector scheme of second-
order accuracy in space and time on smooth solutions. This scheme permits a thorough computation of singu-
larities of shock wave and rarefaction wave type if the initial differential equations are written in divergent
form.

If the transformed systems of equations are written in vector form
of | 9F | G ’
Tt 7E +H=0,
where £, F, G, and H are vectors with components dependent on the parameters being computed, then the two-
step MacCormack difference schemes can be represented in the following form:
for a nonstationary system
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for the limit line equation
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§2. Boundary-layer growth is considered to take account of the viscous interaction with the wall during
two-phase nonequilibrium stream flow in a nozzle. A turbulent boundary layer (IBL) is assumed on the nozzle
wall. The boundary-layer characteristics are determined on the burned up (entrainable and displaceable) rough
multilayered nonstationarily heated surface around which flows the two-phase nonequilibrium multicomponent
gas mixture which goes into chemical reaction with the wall material. The analysis is performed using the
method of [11] by solving the integral equations of the momenta, the energy, the conservation of the components
in the reacting mixtures, and the nonstationary heat-conduction equation acrossthe axisymmetric channel walls.
The approach proposed in [12] was used to close the turbulent boundary-layer equations.

The method of computing the turbulent boundary-layer characteristics [11] permits taking account of the
nonstationarity of the heat elimination in the wall, the arbitrary distribution law of the wall temperature along
the stream and in time, the step entrainment of the wall material along the length of the nozzle profile, and the
roughness of the material of the streamlined surface.

The method of computing the quasistationary TBIL is based on the following assumptions.
1. The turbulent boundary layer starts from the initial channel section being computed.

2. The nonstationarity of the process is taken into account by solving the heat-conduction equation at the
wall by finite differences. The wall temperature Ty, determined from the solution in each time interval At is
the boundary condition for a computation of the TBL parameters in the quasistationary approach.

3. Quantities on the wall, obtained from a computation of the two-phase two-dimensional nonequilibrium
stream, are parameters on the outer boundary-layer limit.

4. The influence of the condensed phase on the heat- and mass-transfer and friction processes in the
boundary layer is taken into account in terms of the average values of the thermal conductivity, specific heat,
enthalpy, molecular weight, and the nonisothermy and blowing parameter, respectively.

5. Entrainment of the erosion-resistant materials (ERM) and the heat shields (HS), consisting of ablating
materials on the basis of macromolecular compounds [13, 14}, occurs because of their thermal decomposition
and the chemical erosion of the coke residue [15].

6. The Prandtl Pr, Schmidt Sc, and Lewis Lenumbers equal one, Dissimilarity of the friction and heat- and
mass-transfer processes is taken into account by means of the integral relations for the boundary layer and the
friction and heat-exchange laws.

7. Roughness of the material surface is due to its ablation. The roughness is assumed sandy in its
structure, corresponding to a class of coatings [16].

The integral equations of the momenta, energy, and conservation of the components for the boundary layer
in an axisymmetric burning-up (with a transverse stream of substance) channel are written in the form
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where the differences between the enthalpies Ah® and the reduced concentrations Ak® [15] are taken over the
boundary-layer thickness Ah® =h}, ~h%*, Ak®=k{-k{ the penetrability parameter is b, = 2jy/p owecs; 0 is the
running radius of the channel; and the friction cf and heat- and mass-transfer (St, Stg) coefficients are defined
in terms of the relative quantity ¥

¢r = ¢z, ¥, St = Sto¥, Sty = St ¥,
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The friction laws for standard conditions have the form
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The heat- and mass-transfer laws are
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where Re**, Rer, Re** are the Reynolds numbers over the thicknesses of the loss of momentum, energy, and
diffusion; p is the viscosity of the two-phase mixture, which depends on the temperature according to the
Sutherland formula; and the subscript w refers to parameters at the wall and the subscript 00, to stagnation
parameters,

The relative friction law ¥ for conditions of taking account of the factors listed is used in the form of the
following approximate dependence:
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Formulas (2.2) and (2.3) approximate the results of a numerical computation to 3% accuracy for an arbitrary
change in the parameters

Yy =T RS, Py = mylmy, Y3 = Cpw [Cpg, by
and the Mach number M, Evaluation of beyp. is performed according to [17].
i

Each factor of (2.2) takes account of the respective influence of the following factors: the nonisothermy
¢ ; inhomogeneity of blowing v, ¥, ; the transverse streamof substance because of thermal decomposition bg
and entrainment of its coke residue bg; influence of compressibility (M is the Mach number); and roughness,
But a simple multiplication of the influence of the perturbing factors noted by the relative {riction coefficient
does not denote their additive effect; interference occurs here.

For example, the generalized nonisothermy parameter i, is defined in terms of the ratio between the
enthalpy of the gas mixture on the wall h&, and the stagnation enthalpy h‘{;; , where hgv depends on the composi-
tion and quantity of gas blown into the boundary layer b;=bg +b, because of thermal decomposition of the wall
material and erosion of the coke residue, as well as from the thermal effects of the chemical reactions oc-
curring on both the wall surface and within the material during its pyrolysis [11]. The blowing effect is itself
taken into account by the third member in (2.2). The second member of this equation again takes account of the
inhomogeneity of the gas blown into the boundary layer as compared with the stream on the outer boundary-
layer limit. The influence of roughness is manifest in terms of the height of the protuberances [the last
parameters change. The description of the mutual influence under the combined effect of the different factors
could be continued.
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The last member in (2.2) takes account of the influence of roughness on the friction coefficient Yy =
cfr/cg. The surface roughness is given in terms of the characteristic Reynolds number Reg =p gk /1y,
written over the height of the protuberances k., The parameters in this factor are calculated as follows:
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where % = 04, C =55, a=1— ht;v/hw’ ‘ﬁ‘=r,i——1M2;'—;, u, is the dynamic velocity, and vy isthe kine-

matic viscosity in (2.2) and (2.4).

The function ¥, is determined by successive approximations, where the surface is assumed smooth Tp=1
as the first approximation, cf =cfg is taken for the smooth surface, and ¢ =cgy for a rough surface with identi-
cal number Re* *, This refers to the determination of the quantities 8+, §, §* *,

A nonstationary heat-conduction equation (without taking account of the spreading along the wall)

vk = 4 (12)= 1oL, e
is solved to take account of the nonstationary heat elimination in the multilayered cylindrical wall. The finite-
difference scheme of this equation for variables of the temperature of the thermophysical properties of the
materials is written in [11]. A condition of the third kind borrowed from [18] is the boundary condition on the
unentrainable wall and on the entrainable wall up to the beginning of the erosion. After the beginning of en-
trainment, a constant entrainment temperature Ty, [11], determined with the heat of reaction of thermal de-
composition of the material in a narrow front, the heat of chemical reactions on the boundary with the two-
phase stream in the diffusion reaction mode, and also the thermophysical properties of the materials taken into
account, is set for the entrainable materials, The initial temperature distribution over the wall thickness is
given. The conditions of equal temperatures and heat fluxes are imposed at the junction of two materials.

The magnitudes of the thicknesses of entrainment and of the coke layer, the heat fluxes at the wall, the
loss of specific impulse by friction, the thermal state of the wall, éte., in time are determined by the alternate
solution of (2.5) with (2.1) when using the parameters on the outer boundary-layer limit, which were obtained
from the system (1.1), (1.2) for the time interval in which the process is considered nonstationary. The param-
eters of the two-phase flow with the change in profile (TBL characteristics) are finally refined by successive
approximations, and then the passage to a new time interval is realized.

§3. Computations were performed by the method elucidated for the nozzle contour shown in Fig. 1 for
the following mixture parameters in the prechamber: py =43 atm, T;=3450°K, weight fraction of particles .
z=0,32, k=1,19, and particle diameter dp=2 p. The initial nozzle profile is shown by the solid line, and the
final profile, distorted because of entrainment of the wall material, is shownby the dashed line; while the
dashed-dot lines are the limit lines for the particles in the initial and final profiles. The Mach number dis-
tribution across the nozzle for the different sections 1-5 (see Fig. 1) in the supersonic part is shown in Fig. 2.
A high-velocity and low-temperature pure gas region, extracted well by this computational scheme, appears
near the wall, The particle velocity is less than the gas velocity, and the maximum lag is observed in the
domain of highest velocity gradients, i.e., in the supersonic domain.

The Mach number distribution along the nozzle length is shown in Fig. 3. The magnitudes on the nozzle
wall and axis, respectively, are noted by lines 1 and 1" for the initial profile (without erosion) by means of a
computation for a two-phase, two-dimensional nonequilibrium stream, while curve 1' is for an equilibrium
mixture according to a one-dimensional analysis. As the nozzle profile is distorted because of entrainment of
the wall material (t° varies from 0 to 70 sec), the gasdynamic stream parameters at the wall vary strongly for
a two-dimensional,two-phase problem (curves 2 and 3) at the site of the appearance of a step.on the juncture
between the unentrainable and entrainable materials. Initially rarefaction, then a compression shock, and later
interference during interaction with the stream core occur in the region of sudden nozzle profile expansion
because of the erosion. The intensity of local fluctuations in the gasdynamic parameters grows with the in-
crease in the erosion (curve 2 at t?=30 sec and curve 3 at t=70 sec). These parameter changes do not reach
the stream axis in practice (curves 1"-3" at the appropriate times). Changes in the Mach numbers for a one-
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dimensional equilibrium computation of the initial profile (curve 1') and one distorted because of entrainment
(curve 3' at t%=70 sec) are represented here.

The change in the gasdynamic parameters results in a corresponding change in the quantity of the en-
trainment along the nozzle length, represented in Fig. 4, where curves 1-3 characterize linear erosion of the
nozzle profile at the times 10, 34, and 70 sec with the flow of the two-dimensional two-phase noneduilibriom
mixture taken into account, while the corresponding dashed curves are for one-dimensional equilibrium gas-
dynamics. This is related to the change in stream parameters on the wall (see Fig, 3). K must be noted that
these peculiarities of wall material entrainment with the two-dimensional and two-phase gasdynamics taken
into account duplicate the results of experiments well.

A change in the boundary-layer displacement thickness, which varies slightly because of nozzle wall
heating and entrainment, is shown by curve 4 in Fig. 4. It is seen that the change in the initial profile to the
nozzle exit is significant because of the boundary-layer displacement thickness and is commensurate with the
thickness of the entrained material (this must be taken into account).

Additional lesses in the nozzle specific impulse AI, shown by. curve 1 in Fig. 5 for the entrainable nozzle
with the rough wall, by curve 2 for an entrainable nozzle with a smooth wall, and by curve 3 for an unentrain-
able nozzle with a smooth wall, appear because of nozzle profile distortion (displacement and entrainment
thicknesses}. It is seen that Al grows as the thickness of the entrained material increases (curves 1 and 2).
Roughness introduces an additional quantity because of displacement thickness. The displacement thickness on
the smooth wall without entrainment for this profile results in negligible additional losses in the specific im-
pulse, commensurate with the accuracy of the computations. Losses of the specific impulse due to friction
{frict With (and without) the two-dimensionality and nonequilibrium taken into account are shown in Fig. 6
(curves 1 and 2 are the eroded rough and smooth nozzles according to two-dimensional gasdynamics, respec-
tively, and 1' is the rough eroded nozzle according to one-dimensional gasdynamics), Roughness increases the
loss of specific impulse by friction.

The influence of nonstationarity of the nozzle wall heating process is observed in Figs. 3-6. This in-
fluence is especially noticeable for small nozzles {large relative wall thickness) and their short operating
times. Not taking account of the nonstationarity and the boundary-layer growth in such situations is especially
fraught with great errors. The complex problem presented permits obtaining much useful information on
taking account of the influence of diverse factors on the individual loss components of the nozzle specific im-
pulse, the two-phase flow parameters, and the boundary-layer characteristics.
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ONE-DIMENSIONAL PULSATION OF A TOROIDAL GASEOUS
CAVITY IN A COMPRESSIBLE LIQUID

V. K. Kedrinskii UDC 532.5.013.2 +534.222.2

Let us discuss within the framework of the acoustic approximation the problem of the pulsation of a
toroidal cavity formed as a result of the explosion of a ring-shaped explosive charge on condition of the fulfill-
ment of the inequality @ >R, where a =const is the radius of the torus and R is the radius of the cavity. At the
same time the cross section of the toroidal cavity practically preserves the shape of a true circle, as the ex-
perimental data show, during a single pulsation period when a~ 10°R « and during a single half-period of pulsa-
tion when a = IOZR*. (R« is the radius of the charge). The problem of the pulsation of a gaseous torus in an
incompressible liquid has been discussed in [1]; however, it does not offer the possibility of evaluating such an
important parameter as the maximum radius of the expanding cavity, and consequently, the energy distribution
among the detonation products and the shock wave in the case of an explosion with axial symmetry.

The solution of the indicated problem is fraught with many difficulties, in particular, the complexity of the
solution of the wave equation. Therefore, it is necessary first of all to find a method of constructing an equa-
tion of one-dimensional pulsation which would permit simplifying the problem posed. Since an expression for
the velocity potential can be found for a number of spatial potential problems of an ideal incompressible liquid
in the case of specified assumptions, an attempt to use it for the transition to acoustic models is natural. The
practicability of this method is shown below in the example of the construction of the equation of one-dimen-
sional pulsation of bubbles.

§1. Let the velocity potentiéll in the case of an incompressible liquid have the form ¢ =& t)/fe). Then its
acoustic version can be represented as ¢ =& (t—r/cy /f(r). Since potential flow of a liquid u=-Vo is being
discussed, where u is the velocity of a fluid particle, then

u = Qf/f* 4 @'/eyf, (1.1

where the prime denotes a derivative with respect to ¢ =t—r /¢y The Cauchy— Lagrange integral with the
form of ¢ taken into account can be written as

D = flo + u?/2), (1.2)
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